On Topological Structure of the First Non-abelian Cohomology of Topological Groups
نویسندگان
چکیده
منابع مشابه
First non-abelian cohomology of topological groups II
In this paper we introduce a new definition of the first non-abelian cohomology of topological groups. We relate the cohomology of a normal subgroup $N$ of a topological group $G$ and the quotient $G/N$ to the cohomology of $G$. We get the inflation-restriction exact sequence. Also, we obtain a seven-term exact cohomology sequence up to dimension 2. We give an interpretation of the first non-a...
متن کاملfirst non-abelian cohomology of topological groups ii
in this paper we introduce a new definition of the first non-abelian cohomology of topological groups. we relate the cohomology of a normal subgroup $n$ of a topological group $g$ and the quotient $g/n$ to the cohomology of $g$. we get the inflation-restriction exact sequence. also, we obtain a seven-term exact cohomology sequence up to dimension 2. we give an interpretation of the first non-a...
متن کاملOn Duality of Topological Abelian Groups
Let G denote the full subcategory of topological abelian groups consisting of the groups that can be embedded algebraically and topologically into a product of locally compact abelian groups. We show that there is a full coreflective subcategory S of G that contains all locally compact groups and is *-autonomous. This means that for all G,H in S there is an “internal hom” G −◦H whose underlying...
متن کاملOn Mackey Topologies in Topological Abelian Groups
Let C be a class of topological abelian groups and SPC denote the full subcategory of subobjects of products of objects of C. We say that SPC has Mackey coreflections if there is a functor that assigns to each object A of SPC an object τA that has the same group of characters as A and is the finest topology with that property. We show that the existence of Mackey coreflections in SPC is equival...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: British Journal of Mathematics & Computer Science
سال: 2014
ISSN: 2231-0851
DOI: 10.9734/bjmcs/2014/8943